2016 (November) PHYSICS (Honours) SIXTH PAPER

(Mathematical Physics)

Full Marks : 100 Pass Marks : 35

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer all questions

1. Answer the following :

 $1 \times 4 = 4$

- (a) What is the modulus of the complex number $f(z) = e^z = e^{x+iy}$?
- (b) What is the principal argument of the complex number C = 2 + 2i?
- (c) What are the zeroes of the function $f(z) = z^2 1$?
- (d) What do you mean by a singularity of a function?

Q7/100

(Turn Over)

2. Answer either (a) or (b) :

- (a) If a function is defined by $f(z) = e^z$, find the sum of f(z) and its complex conjugate when both of them are expressed in polar forms. Prove that the function $F(z) = \sqrt{|xy|}$ is not analytic at the origin even though Cauchy-Riemann equations are satisfied there. 2+4=6
- (b) Show that the function $u(x, y) = y^3 - 3x^2y$ is a harmonic function and hence find its harmonic conjugate v(x, y) such that the function f(z) = u(x, y) + iv(x, y) is an analytic function. 2+4=6
- 3. Answer either (a) or (b) :
 - (a) What do you mean by a contour? Evaluate

$$\oint_C \frac{\sin z \, dz}{\left(z - \frac{\pi}{4}\right)^3}$$

where C is the circle |z|=3. 2+3=5

(b) State Cauchy integral formula. Evaluate

$$\oint_C \frac{(z-1)\,dz}{(z+1)^2(z-3)}$$

where C is the circle |z-i|=2.

Q7/100

(Continued)

2+3=5

- 4. Answer any three of the following : 4×3=12
 - (a) Writing the principal part of the Laurent series of the function $f(z) = \frac{1 e^{2z}}{z^4}$, show

that the singular point of this function is a pole of order 3 and also find the residue at that singularity. 3+1=4

(b) Obtain the Taylor series expansion of the function

$$f(z) = \frac{1}{\left(1+z\right)^m}$$

about the origin.

(c) Expand the function

$$f(z) = \frac{z}{(z-1)(z-3)}$$

in a Laurent series in the region 0 < |z-1| < 2.

(d) Give a simple definition of residue at infinity of a function. Find the residue at infinity in the case of the function

$$f(z)=\frac{z^2}{z-4}$$

07/100

1+3=4

4

4

(3)

5. Evaluate any one of the following (using residue theorem) :

(4)

(i)
$$\int_0^{\pi} \frac{a d\theta}{a^2 + \cos^2 \theta}, a > 0$$

(ii)
$$\int_0^{\infty} \frac{dx}{x^2 + 1}$$

6. Evaluate any two of the following (using beta and gamma functions) : 2×2=4

(i)
$$\int_0^\infty \frac{x^2}{(1+x)^5} dx$$

(ii) $\int_{-1}^{+1} \sqrt{\frac{1+x}{1-x}} dx$

(iii)
$$\int_0^\infty \frac{e^{-\delta t}}{\sqrt{t}} dt$$

7. Answer any three of the following :

3×3=9

8

(a) Prove that

$$P_l(-x) = (-1)^l P_l(x)$$

ee) Expand 📥 Turrettets

where l is a non-negative integer.

(b) Using the generating function for Legendre polynomials $P_l(x)$, prove that

$$\int_{-1}^{+1} \frac{P_n(x) \, dx}{\sqrt{1 - 2hx + h^2}} = \frac{2h^n}{2n + 1}$$

where n is a non-negative integer.

Q7/100

(Continued)

(c) Prove that $P_l^m(-x) = (-1)^{l+m} P_l^m(x)$ where l and m are positive integers.

(d) Prove that
$$\int_{-1}^{+1} P_1^1(x) P_1^{-1}(x) dx = -\frac{2}{3}$$

8. Answer either (a) or (b) :

(a) Prove the following relations : 4+3=7

(i)
$$e \cdot \cos 2x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} H_{2n}(x)$$

(ii)
$$\frac{d^k}{dx^k}H_n(x) = \frac{2^k n!}{(n-k)!}H_{n-k}(x)$$

where k < n

(b) Prove the following relations : 2+5=7(i) $\left[\frac{d}{dx}H_{2n}(x)\right]_{x=0} = 0$ (ii) $\int_{-\infty}^{+\infty} e^{-x^2} x^2 [H_n(x)]^2 dx = 2^n n! \left(n + \frac{1}{2}\right) \sqrt{\pi}$

9. Answer either (a) or (b) :

(a) Starting from the sum formula, derive Rodrigues' formula for generalized Laguerre polynomials, namely

$$L_{n}^{\alpha}(x) = \frac{x^{-\alpha}e^{x}}{n!} \frac{d^{n}}{dx^{n}} (e^{-x} x^{n+\alpha})$$
 10

Q7/100

(Turn Over)

(5)

(b) Prove the following formulas :

(6)

(i)
$$J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$

(ii) $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$

Deduce that

$$[J_{-\frac{1}{2}}(x)]^{2} - [J_{\frac{1}{2}}(x)]^{2} = \frac{2\cos 2x}{\pi x}$$
(4+4)+2=10

10. Answer either (a) or (b) :

(a) Making certain assumptions, develop the one-dimensional wave equation in the case of transverse vibrations of a light stretched string. Name the class of the partial differential equation you obtained.

9+1=10

(Continued)

(b) Stating the required assumptions, develop the one-dimensional equation of heat flow along a uniform solid rod. Name the class of the partial differential equation you obtained and also the SI units of thermal conductivity and diffusivity. 7+1+2=10

11. Write down the three-dimensional classical wave equation in circular cylindrical and spherical polar coordinate systems. Solve the Laplace's equation in plane polar coordinate system by the method of separation of variables. 2+8=10

Q7/100

(7)

12. Answer either (a) or (b) :

(a) If a function f(x) is defined by

$$f(x) = \begin{cases} \pi + x, & -\pi \le x \le 0\\ \pi - x, & 0 \le x \le \pi \end{cases}$$

prove that its Fourier series representation is given by

$$f(x) = \frac{\pi}{2} + \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \dots \right]$$

Hence deduce that

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8} \qquad 6 + 1 = 7$$

(b) A periodic function is defined by

$$f(t) = f(t+T) = \begin{cases} \frac{at}{T}, & 0 \le t \le \frac{T}{2} \\ a\left(1 - \frac{t}{T}\right), & \frac{T}{2} \le t \le T \end{cases}$$

Sketch a profile of the function and its periodic extension. Also, obtain a Fourier series representation of the function. 1+6=7

13. Answer either (a) or (b) :

(a) A certain function is defined by

$$f(x) = f(x+L) = \begin{cases} -k, & -L \le x \le 0\\ k, & 0 < x \le L \end{cases}$$

Q7/100

(Turn Over)

Prove that the Fourier series
representation of this function is given by
$$f(x) = \frac{4k}{\pi} \left[\sin \frac{\pi x}{L} + \frac{1}{3} \sin \frac{3\pi x}{L} + \frac{1}{5} \sin \frac{5\pi x}{L} + \frac{1}{7} \sin \frac{7\pi x}{L} + \dots \right]$$

Hence deduce that

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8} \qquad 5 + 3 = 8$$

(b) The output voltage of a half-wave rectifier of an alternating voltage source is defined by

$$V(t) = \begin{cases} V_0 \sin \omega t, & 0 \le t \le \frac{T}{2} \\ 0, & \frac{T}{2} < t \le T \end{cases}$$

where V_0 is the peak voltage and ω is the circular frequency, *T* is the time period of the alternating source and *t* is the instantaneous time. Sketch a profile of the rectified output voltage waveform and also, obtain a Fourier series representation of it. 3+5=8

 $\star \star \star$

(8)

Total No. of Printed Pages-9

PHY : SE H-506

2017 (November)

PHYSICS (Honours) SIXTH PAPER (Mathematical Physics)

> Full Marks : 100 Pass Marks : 35

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer all questions

- In the study of complex variables, what do you understand by the following? 1×4=4
 - (a) Principal argument of a complex number
 - (b) Analytic part of a Laurent series
 - (c) An isolated singularity
 - (d) A pole of order m

Either

2.

3.

(2)

(a) What do you mean by an analytic function and an entire function? Show that the function $f(z) = z^*$ is not analytic anywhere. 1+1+4=6

Or

(b) What do you mean by a continuous function? Prove that the function $f(z) = x^2 + iy^3$ is not analytic at the origin even though Cauchy-Riemann equations are satisfied there. 2+4=6

Either

(a) For an analytic function f(z), prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$$

Or

(b) Show that the function $v(x, y) = e^x \sin y$ is a harmonic function. Find its harmonic conjugate function u(x, y) and the corresponding analytic function f(z).

2+4=6

4. For an analytic function f(z), prove that its *n*th order derivative at z = a is given by

$$f^{(n)}(a) = \frac{n!}{2\pi i} \oint_C \frac{f(z) dz}{(z-a)^{n+1}}$$

where C is a closed curve enclosing the point z = a. Using this formula, prove that

$$\oint_C \frac{e^{iz}}{z^3} dz = -\pi i$$

where C is the circle |z|=2.

5. Answer the following :

(a) Obtain the Laurent series representing the function

$$f(z) = \frac{1}{(z-1)(z-2)}$$

valid for 1 < |z| < 2.

(b) Determine the nature of singularity in respect of the function $f(z) = \frac{\sin z}{z}$.

ñ.

2

8

3

4+2=6

6. Prove any one of the following (use Residue theorem) :

2

(a)
$$\int_{0}^{2\pi} \frac{d\theta}{(5-3\cos\theta)^2} = \frac{5\pi}{32}$$

(b)
$$\int_{0}^{\infty} \frac{\sin x}{\cos \theta} dx = \frac{\pi}{2}$$

x

Using Beta and Gamma functions, prove the following : 2+2=4

(a)
$$\int_0^\infty \frac{x}{(1+x)^5} dx = \frac{1}{12}$$

(b) $\Gamma\left(-\frac{1}{2}\right) = -2\sqrt{\pi}$

8. Answer any three of the following : 3×3=9

(a) Prove that

$$P_l'(1) = \frac{l(l+1)}{2}$$

where the prime denotes differentiation.

(b) Using the generating function for Legendre polynomials $P_1(x)$, prove that

$$\sum_{l=0}^{\infty} P_l(x) = \frac{1}{\sqrt{2(1-x)}}$$

(c) Prove that $P_l^l(\cos\theta) = (2l-1)!! \sin^l \theta$, where *l* is any non-negative integer and

$$2l-1$$
!!= 1.3.5.7. ··· (2l-1)

(d) Prove that

 $P_2^2(\cos\theta) = 3\sin^2\theta$

8Q/98

(Continued)

Either

(a) Prove that for any positive integer n $\int_{-\infty}^{+\infty} e^{-x^2} x H_n(x) [H_{n+1}(x) - H_{n-1}(x) dx] = 2^n n! \left(n + \frac{1}{2}\right) \sqrt{\pi}$

Also, find the value of

$$\int_{-\infty}^{+\infty} e^{-x^2} [H_2(x)]^2 dx \qquad 5+2=7$$

Or

(b) Prove that

$$H_n(x) = 2^n \left[\exp\left(-\frac{1}{4}\frac{d^2}{dx^2}\right) \right] x^n$$

where *n* is a non-negative integer. For what value(s) of *n*, the Hermite polynomial $H_n(0)$ will vanish? 6+1=7

Either

(a) Prove the following : 7+3=10(i) $\int_{0}^{\infty} e^{-x} x^{\alpha} [L_{n}^{\alpha}(x)]^{2} dx = \frac{\Gamma(n+\alpha+1)}{n!}$ (ii) $\int_{0}^{\frac{\pi}{2}} \sqrt{\pi x} J_{\frac{1}{2}}(2x) dx = 1$

10.

9.

11.

(i)
$$\frac{d}{dx}L_{n}^{\alpha}(x) = -L_{n-1}^{\alpha+1}(x)$$

(ii)
$$J_0(\sqrt{x^2 - 2xt}) = \sum_{s=0}^{\infty} J_s(x) \frac{t^3}{s!}$$

Either

(a) A uniform string of length 2L is stretched and fastened at the ends at x = 0, x = 2L. The middle point of the string is then plucked, making an initial vertical displacement h perpendicular to the initial equilibrium position and then it is freely released from rest. Prove that the displacement of a point of the string at a distance s from the middle point at an instant of time t is given by

$$u(L \mp s, t) = \frac{8h}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \sin\left\{\frac{(2n+1)\pi}{2}\right\}$$
$$\sin\left\{\frac{(2n+1)\pi(L \mp s)}{2L}\right\} \cos\left\{\frac{(2n+1)\pi vt}{2L}\right\}$$

where v is the speed of the propagation of the wave.

3+7=10

(b) A homogeneous circular membrane of radius a is set to vibrations keeping the periphery at rest. Obtain the displacement u(x, t) at any point distant r from the centre at an instant of time t, given that the initial displacement is u(r, 0) = f(r) and the initial speed is zero.

10

Either

(a) The one-dimensional heat conduction equation is given by

$$\frac{\partial}{\partial t}u(x, t) = \kappa \frac{\partial^2}{\partial x^2}u(x, t)$$

where u(x, t) is the temperature at the position x at time t and κ (kappa) is a quantity known as the diffusivity of the medium.

Determine the class of partial differential equation to which the above PDE belongs. Also, define the diffusivity of a given medium.

Solve the two-dimensional Laplace's equation in Cartesian coordinate system by the method of separation of variables. 3+2+5=10

12.

the three-dimensional Write down (b) classical wave equation in circular spherical polar and cylindrical coordinates respectively. Show that a function $\psi(\vec{r}, t) = Ae^{i(\vec{K}\cdot\vec{r}-\omega t)}$, where A is a constant, \vec{K} is a constant vector called the propagation vector of the wave and ω (omega) is the angular frequency of the wave, satisfies the threedimensional classical wave equation with the propagation speed given by

$$v = \frac{\omega}{K}$$

where $K = |\vec{K}|$.

2+2+6=10

13.

Either

(a) A periodic function f(x) is defined by

$$f(x) = f(x+2L) = x^2, -L \le x \le +L$$

Prove that the Fourier series representation of the function is given by

$$f(x) = x^{2} = \frac{L^{2}}{3} + \frac{4L^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos\left(\frac{n\pi x}{L}\right)$$

(Continued)

8Q/98

Hence deduce that—

(*i*)
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$$

(*ii*) $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots = \frac{\pi^4}{90}$

Or

(b) A periodic function g(x) is defined by

 $g(x) = g(x+2L) = x, \ -L \le x \le +L$

Sketch a profile of the function and show its periodic extension outside the given interval. Prove that the Fourier series representation of the function is given by

$$g(x) = x = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2L}{n\pi} \sin\left(\frac{n\pi x}{L}\right)$$

Hence deduce that

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4} \qquad 3 + 5 + 2 = 10$$

6+2+2=10

5

14. Prove the Parseval's formula that can be expressed as

$$\frac{1}{L}\int_{-L}^{L}[f(x)]^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty}(a_n^2 + b_n^2)$$

80-2000 100

2021

(November) PHYSICS (Honours) SIXTH PAPER (Mathematical Physics)

Section – A for Regular Candidates <u>Full Mark: 70</u> Pass Mark: 25

Section – A and Section – B for Back/Casual Candidates

Full Mark: 100 Pass Mark: 35

Time: 3 hours

The figures in the margin indicate full marks for the questions.

Section – A

1. a) What do you mean by a harmonic function?	1
b) What is the Principal argument of the complex number, Z=3+3i?	1
c) Define a simple pole.	1
d) For what values of n the Hermite polynomial Hn(o) will vanish?	1
2. a) For an analytic function f(z), prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f(z) ^2$	6

Or

b) If a function is define by $f(z)=e^z$, find the sum of f(z) and its complex conjugate when both of them are expressed in polar forms.

Prove that the function $F(Z) = \sqrt{|xy|}$ is not analytic at the origin even though Cauchy-Rie mann equations are satisfied there. 2+4=6

- 3. State and prove Cauchy's Theorem of an analytic function of a complex variable. 1+5=6
- 4. A) For an analytic function f(z), Prove that its nth order derivation at Z=a is given by

$$F_a^n = \frac{n!}{2\lambda 2} \oint_c \frac{f(z)dz}{(z-a)^{n+1}} \text{ where C is a closed curve enclosing the point Z=a.}$$

b) Using this formula prove that
$$\oint_{c} \frac{e^{2z}}{Z^{3}} dz = -\lambda i$$
 where C is the circle $|Z| = 2$. 3

5. Using residue theorem prove that
$$\int_{a}^{2\lambda} \frac{d\theta}{(a+b\cos\theta)^2} = \frac{2\lambda a}{(a^2-b^2)^{\frac{3}{2}}}$$
 where a>b>0. 8

6. a) For a non negative integer n, prove that, $\int_{-1}^{+1} \frac{Pn^{(x)}dx}{\left(\sqrt{\left(1-2xh+h^2\right)}\right)} = \frac{2h^n}{2n+1}$

b) Prove that $P_l^m(-x) = (-1)^{l+m} P_l^m(x)$ where 'l' and 'm' are positive integers. 4

7. a) Show that
$$\int_{-1}^{+1} x P_l(x) P_{l-1}(x) dx = \frac{2l}{4l^2 - 1}$$

b) Prove that $\int_{0}^{\frac{\lambda}{2}} \sqrt{(\lambda x)} J_{\frac{1}{2}}(2x) dx = 1$
3

8. a) in the case of Bessel function's of the first kind, derive the recurrence relation

$$J_{n-1}(x) + J_{n+1}(x) = \frac{2n}{x} J_n(x)$$
4

Or

b) Prove that
$$\frac{J_n(x)}{X^n} = \frac{1}{2^{n\Gamma(n+1)}}$$

i) $\lim x \to 0$
ii) $L_n(0) = 1$

- 9. a) Stating the required assumptions develop the one dimensional equation of heat flow along a uniform solid bar. Name the class of the partial differential equations you obtained and also the SI units of thermal conductivity and diffusivity. 7+1+2=10
 b) Making certain assumptions develop the one dimensional wave equation in the case of transverse vibrations of a light stretched string. Name the class of the partial differential equation (9+1=10)
- 10. A certain functions is defined by

$$f(x) = f(x+\lambda) = \begin{cases} -k, -\lambda \le x \le 0 \\ +k, 0 < x \le \lambda \end{cases} \text{ and deduce that } \frac{\lambda}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$
 4+1=5

5

11. Prove that a complex form of Fourier Series is equivalent to a Fourien series.

Section-B

- 12. Using gamma functions,
 - a) Prove that $\Gamma(n) = (n-1)!$, when 'n' is a positive integer.
 - b) Prove that $\Gamma(-\frac{1}{2}) = -2\sqrt{\lambda}$

Or

If a function f(x) is defined by $f(x) = \begin{cases} \lambda + x, -\lambda \le x \le 0 \\ \lambda - x, 0 \le x \le \end{cases}$

Hence, deduce $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\lambda^2}{8}$.

13. For a Bessel function, show that
$$\sqrt{\frac{\lambda x}{2}} J_{\frac{3}{2}}(x) = \frac{1}{x} \sin x - \cos x$$

14. Answer either (a) and (b) or (c).

Find the residues of the following functions f(z) at the given poles.

a)
$$f(z) = \frac{SinZ}{1 - Z^4}$$
 at Z=I
SinZ

5

5

5

b)
$$f(z) = \frac{SmZ}{(Z - \lambda)^3}$$
 at $Z = \lambda$

c) Prove that
$$\Gamma(n)\Gamma(1-n) = \frac{\lambda}{\sin(n\lambda)}$$
, for $0 < n < 1$ when 'n' is an integer. 5

15. Show that

Or

- a) $\cos x = J_0 2J_1 + 2J_4$
- b) $Sinx = 2J_1 2J_3 + 2J_5$
- 16. If alight stretched string of length 'l' is plucked at its midpoint by the displacement 'h'. Show that the deflection of the string at a distance 'x' from one end at time 't' is given by

$$U(x,t) = \frac{8h}{\lambda^2} \left(\frac{\sin \lambda x}{l}, \frac{\cos \lambda \vartheta t}{l} - \frac{1}{9} \sin \frac{3\lambda x}{l} \cdot \cos \frac{3\lambda \vartheta t}{l} + \dots \right)$$

Where \mathcal{G} is the constant speed of propagation of wave along the string. Give the reason why vibrations of even harmonics are absent. 9+1=10

Total No. of Printed Pages-7

PHY : SE-H 506

5th Semester Exam., 2022 (November)

PHYSICS (Honours)

SIXTH PAPER

(Mathematical Physics)

Full Marks : 100Pass Marks : 35

Time : 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following questions :

 $1 \times 4 = 4$

- (a) What do you mean by delta neighbourhood?
- (b) Convert

$$-i \tan^{-1}\left(\frac{3}{2}\right)$$

to rectangular coordinate.

- (c) What is a Jordan curve?
- (d) What is the generating function of Laguerre polynomial?

Q23/140

(Turn Over)

2. Verify Cauchy's theorem for the function

$$f(z) = z^3 - iz^2$$

on the circle C: |z|=1.

3. (a) Find the conjugate function of

$$u(x, y) = \frac{1}{2}\ln(x^2 + y^2)$$

Or

- (b) Find the analytic function whose real part is cos x cosh y.
- 4. (a) If

$$A(x, y) = xy - ix^2 y^3$$

find grad A, div A and curl A. 2+2+2=6

Or

(b) Prove that div grad A = 0, if A is imaginary or more generally if Re {A} is harmonic.

5. (a) Evaluate :

$$\int_{-\infty}^{\infty} \frac{x^2}{(1+x^2)^3} dx$$

Q23/140

(Continued)

3

(3)

Or

(b) Evaluate :

$$\int_{-\infty}^{\infty} \frac{\cos 3x}{(x^2+1)(x^2+4)}$$

(c) Show that the function

$$f(z) = \begin{bmatrix} \frac{(x^3 - y^3) + i(x^3 + y^3)}{x^2 + y^2}, & z \neq 0\\ 0, & z = 0 \end{bmatrix}$$

satisfies Cauchy-Riemann condition at z=0. Determine whether the function is analytic at z=0. 4+4=8

(b) Prove titat

6. Evaluate :

$$\int_0^1 (1-x^n)^{1/n} dx$$

7. (a) Prove the following : $2\frac{1}{2}+2\frac{1}{2}=5$

(i)
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$

(*ii*)
$$J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$

Q23/140

(Turn Over)

Or

(b) Prove that

$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x)$$

with $n \ge 1$.

(c) Prove that

$$x\frac{d}{dx}L_{n}^{k}(x) = nL_{n}^{k}(x) - (n+k)L_{n-1}^{k}(x)$$
 5

50 Z D

8. (a) Expand the function

$$f(x) = x^4 - 2x^3 + 3x^2 + 5x - 9$$

in a series of Legendre polynomials.

Or

(b) Prove that

$$P_l^{m+1}(x) - \frac{2mx}{\sqrt{1-x^2}} P_l^m(x) + \frac{l(l+1) - m(m-1)}{P_l^{m-1}(x)} = 0$$

9. (a) Write down the equation satisfied by free transverse vibration of a string with ends fixed and solve it. 10

(Continued)

5

0

(b) There is a rectangular membrane with length l and breadth b. The boundary of the membrane is fixed. If the initial displacement is

$$\sin\left(\frac{\pi x}{l}\right)\sin\left(\frac{3\pi y}{b}\right)$$

and initial velocity is zero, find the displacement of the membrane at an arbitrary time t.

10. (a) Solve the Laplace's equation in plane polar coordinate system by the method of separation of variables.

Or

(b) Develop the one-dimensional equation of heat flow along a uniform solid rod.

11. (a) Find the Fourier series representing $f(x) = x, 0 < x < 2\pi$ and sketch its graph from $x = -4\pi$ to $x = 4\pi$. 5+1=6

Or

(b) Find the Fourier series representing $f(x) = x^2, -\pi < x < \pi$ and sketch its graph from $x = -2\pi$ to $x = 2\pi$. 5+1=6

Q23/140

(Turn Over)

12. Find the Fourier cosine series for the function

$$f(x) = \begin{bmatrix} 1 & \text{for } 0 < x < \pi/2 \\ 0 & \text{for } \pi/2 < x < \pi \end{bmatrix}$$

13. Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

14. (a) Find the Taylor series expansion of

$$f(z) = \frac{1}{(1+z)^2}$$

about the origin.

Or

(b) Find the Laurent series expansion of

$$f(z) = \frac{e^{2z}}{(z-1)^3}$$

about z=1.

15. (a) Find the residue of

$$f(z) = \frac{e^{2z}}{1+e^z}$$

at its pole.

Q23/140

(Continued)

5

5

3

Or

(b) Find the residue of

$$f(z)=\frac{1}{z^3-z^5}$$

at infinity.

16. (a) Find the solution of

$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + \dot{y} = 0$$

about x = 0 by using Frobenius method. 8

(b) Prove that

$$1 + \frac{1}{2}P_1(\cos\theta) + \frac{1}{3}P_2(\cos\theta) + \dots = \ln\left(\frac{1 + \sin\theta/2}{\sin\theta/2}\right)$$

5

4

- 17. A rod of length l with insulated sides is initially at a temperature T(x, 0)=A. Its ends are kept at constant temperature 0 °C. Find the temperature T(x, t) at a point distant xafter time t.
- 18. Find the Fourier sine series for the function $f(x) = e^x$ for $0 < x < \pi$.

 $\star \star \star$