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PHY: SE –H 506 

2021  

(November) 

PHYSICS 

 (Honours) 

SIXTH PAPER 

(Mathematical Physics) 

Section – A for Regular Candidates 

Full Mark: 70 

Pass Mark: 25 

Section – A and Section – B for Back/Casual Candidates  

Full Mark: 100 

Pass Mark: 35 

Time: 3 hours  

The figures in the margin indicate full marks for the questions. 

Section – A 

1. a) What do you mean by a harmonic function?                                                                     1 

b) What is the Principal argument of the complex number, Z=3+3i?                                 1 

c) Define a simple pole.                                                                                                       1 

d) For what values of n the Hermite polynomial Hn(o) will vanish?                                  1 

2. a) For an analytic function f(z), prove that    
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Or 

b) If a function is define by f(z)=ez, find the sum of f(z) and its complex conjugate when 

both of them are expressed in polar forms. 

Prove that the function   xyZF  is not analytic at the origin even though Cauchy-Rie 

mann equations are satisfied there.                                                                               2+4=6 

3. State and prove Cauchy’s Theorem of an analytic function of a complex variable.  1+5=6 

4. A) For an analytic function f(z), Prove that its nth order derivation at Z=a is given by 
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 where C is a closed curve enclosing the point Z=a.                         4 

b) Using this formula prove that idz
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 where C is the circle 2Z .                     3 

5. Using residue theorem prove that 

2

3

22

2

2

)(

2

)cos(
ba

a

ba

d













where a>b>0.                   8 
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6. a) For a non negative integer n, prove that, 
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b) Prove that )()1()( xPxP m
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 where ‘l’ and ‘m’ are positive integers.                    
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7. a) Show that 
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b) Prove that 1)2()(
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8. a) in the case of Bessel function’s of the first kind, derive the recurrence relation 
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Or 

b) Prove that 
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 i) 0lim x  

 ii) 1)0( nL                                                                                                                                              1 

9. a) Stating the required assumptions develop the one dimensional equation of heat flow 

along a uniform solid bar. Name the class of the partial differential equations you obtained 

and also the SI units of thermal conductivity and diffusivity.                               7+1+2=10 

b) Making certain assumptions develop the one dimensional wave equation in the case of 

transverse vibrations of a light stretched string. Name the class of the partial differential 

equation you obtained.                                                                                                9+1=10 

10. A certain functions is defined by  
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11. Prove that a complex form of Fourier Series is equivalent to a Fourien series.                  5 

Section-B 

12. Using gamma functions, 

a) Prove that ,)!1()(  nn when ‘n’ is a positive integer. 

b) Prove that 2)
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If a function f(x) is defined by 
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13. For a Bessel function, show that 
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14. Answer either (a) and (b) or (c). 

Find the residues of the following functions f(z) at the given poles. 

a) 
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c) Prove that 10,
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 when ‘n’ is an integer.                           5 

15. Show that  

a) 410 22cos JJJx   

b) 531 222 JJJSinx                                                                                                                          5 

16. If alight stretched string of length ‘l’ is plucked at its midpoint by the displacement ‘h’. 

Show that the deflection of the string at a distance ‘x’ from one end at time ‘t’ is given by 
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Where  is the constant speed of propagation of wave along the string. Give the reason why 

vibrations of even harmonics are absent.                                                                                         9+1=10 
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