NAMBOL L. SANOI COLLEGE, NAMBOL DEPARTMENT OF MATHEMATICS QUESTION BANK FOR MATHEMATICS PREVIOUS 4 YEARS (2016-2019) SEMESTER II OBJECTIVE TYPE

(1 MARK QUESTIONS)

2016

MATHEMATICS

(Elective)

SECOND PAPER

(Calculus and Ordinary Differential Equations)

- Choose and write the correct answer for each of the following :
 - (a) If

$$\lim_{x \to 0} \frac{\sin 3x + a \sin 2x}{x^2}$$

be finite, then the value of a is

(1)	$\frac{3}{2}$	$(u) -\frac{3}{2}$	
(111)	$\frac{2}{3}$	$(iv) -\frac{2}{3}$	

- (b) The curve for which the curvature is zero at every point is
 - (i) an ellipse
 - (ii) a parabola
 - (iii) a hyperbola
 - (1v) a straight line
- (c) The perimeter of the curve $r = a\cos\theta$ is
 - (i) $\frac{1}{2}\pi a$ (ii) $\frac{1}{3}\pi a$ (iii) $\frac{1}{4}\pi a$

(ιυ) πα

(d) The volume V of the solid of revolution, where x = f(y) is the curve, the axis of revolution is the y-axis, bounded by $y = y_1$ and $y = y_2$, is given by

(i)
$$V = \pi \int_{y_1}^{y_2} x \, dy$$

(ii) $V = 2\pi \int_{y_1}^{y_2} x^2 \, dy$
(iii) $V = \pi \int_{y_1}^{y_2} x^2 \, dy$
(iv) $V = 2\pi \int_{y_1}^{y_2} x \, dy$

(e)	The integrating fact	or of the e	quation
	$\frac{dy}{dx} + \frac{2y}{x}$	= e ^x	
	is		
	(i) x ²	(ii) e^{2x}	
	(m) log2x	$\begin{array}{l} (\overline{u}) e^{2x} \\ (\overline{u}) \frac{2}{x} \end{array}$	
(f)	The solutions of equations	the simu	ltaneous
	$\frac{3dy}{dx}=\frac{y}{x};$	$\frac{2dz}{dx} = \frac{z}{x}$	
	are		
	(i) $xy = c_1$ and $yz = c_1$		
	(ii) $xy^3 = c_1$ and y^3	${}^{3}z^{2} = c_{2}$	
	(iii) $x = c_1 y^3$ and y^3	$c_2 z^2$	
	(iv) $x^3 = c_1 y$ and y^2	$c^2 = c_2 z^3$	
(g)	The particular inte	gral of	
	$\sec x \frac{d^2 y}{dx^2} - 4$ (so	ec x) y = 2 sin	n x
	is		
	(i) $\frac{1}{8}\sin 2x$	$(ii) -\frac{1}{8}sin$	
	(iii) $\frac{1}{8}\cos 2x$	$(iv) -\frac{1}{8}cc$	s2x
			Cupri

-

vav... (a) The reduction formu $I_n = \int_0^{\pi/2} \sin^n x \, dx$ is given by formula for (i) $I_n = \frac{n}{n-1} I_{n-2}$ (ii) $I_n = \frac{n-1}{n} I_{n-2}$ $(iii) \quad I_n = \frac{n-1}{n} I_{n-1}$ (iv) $I_n = \frac{n}{n-1} I_{n-1}$

Q7/297

(Turn Over)

(b) If $u = \sin\left(\frac{x^2 + y^2}{xy}\right)$, then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$
equals
(i) O (ii) 1
(iii) -1 (iv) 2
(c) The area of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$ is
(i) $\frac{3}{4}\pi a^2$ (ii) $\frac{4}{3}\pi a^2$
(iii) $\frac{3}{8}\pi a^2$ (iv) $\frac{8}{3}\pi a^2$
(d) The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ revolves about its
minor axis. The volume of the solid of
revolution is
(i) $\frac{4}{3}\pi ab^2$ (ii) $\frac{3}{4}\pi a^2 b$
(iii) $\frac{4}{3}\pi a^2 b$ (iv) $\frac{3}{4}\pi ab^2$
(e) The condition of exactness of the differential equation $Mdx + Ndy = 0$ is
(i) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$ (ii) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$
(iii) $\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0$ (iv) $\frac{\partial M}{\partial y} + \frac{\partial N}{\partial x} = 0$
(f) The differential equation for which $y = (C_1x^2 + C_2x + C_3)e^{2x}$ is the general solution, is
(i) $(D-2)y = 0$ (ii) $(D-3)y = 0$

.

(iii) $(D-2)^3 y = 0$ (iv) $(D-3)^2 y = 0$

(g) If $f(x) = Ax^2 + Bx + C$, then the value of ξ in the mean value theorem $f(b) - f(a) = (b - a) f'(\xi)$ is

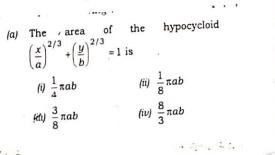
(i) b-a (ii) a+b(iii) $\frac{b-a}{2}$ (iv) $\frac{a+b}{2}$

.

2018 (May)

a) The value of $\int_0^\infty e^{-s} dx$ is ii) 1 i) 0 iv) ∞ iii) e b) Perimeter of the asteroil $x^{\frac{1}{2}} + y^{\frac{1}{2}} = a^{\frac{1}{2}}$ is 3a i) 2a ii) iv) 6a ' c) The circle $x^2 + y^2 = a^2$ revolves about the x – axis. The surface area of the whole sphere generated is 2*π*α² ii) i) πa^2 iii) $4\pi a^2$ iv) 6 ла² d) Integrating factor of the differential equation $\cos^2 x \frac{dy}{dx} + y = \tan x \text{ is}$ ii) $-\tan x$ iv) $e^{-\tan x}$ i) $\tan x$ iii) $e^{\tan x}$ If $v = \log \frac{x^2 + y^2}{x + y}$, hen $x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial y}$ equals e) ii) 1 iv) 3 i) 0 iii) 2 Particular integral of $(D-2)^2 y = x^3 e^{2x}$ is i) $\frac{1}{20} x^5$ ii) $\frac{1}{20} x^5 e^{2x}$ iii) $\frac{1}{4} x^4 e^{2x}$ iv) $(Ax + B) e^{2x}$ If $\lim_{x \to 0} \frac{\sin 2x + a \sin x}{x^3}$ be finite, then the value of a is f) g) ii) l iv) -1 i) 0 iii) 2

2019



1.12.3

3.

(b) The circle $x^2 + y^2 = a^2$ revolves about the y-axis. The volume of the solid of revolution is (i) па³ (11) $\frac{1}{3}\pi a^3$ (m) $\frac{2}{3}\pi a^3$ $(\pi v) \frac{4}{3} \pi a^3$ (c) If $u = \log\left(\frac{x^2 + y^2}{x + y}\right)$, then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ equals (1) 0 (d) 1 (iii) 2 (iv) -1 (d) The reduction formula $I_n = \int_0^{\pi/4} \tan^n x \, dx$ is given by formula for (i) $I_n = \frac{1}{n-1} - I_{n-2}$ (ii) $I_n = \frac{1}{n-2} - I_{n-1}$ (iii) $I_n = \frac{1}{n+1} - I_{n-1}$ (iv) $I_n = \frac{1}{n+2} - I_{n-2}$ (e) Particular integral of the differential equation $(D-1)^2 y = e^x$ is (i) e^x (ii) xe^x (iii) $x^2 e^x$ $(10) \frac{1}{2} x^2 e^x$ The condition for exactness of the 0 differential equation Mdx + Ndy = 0 is (i) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$ (ii) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ (iii) $\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0$ (iv) $\frac{\partial M}{\partial y} + \frac{\partial N}{\partial x} = 0$ (g) The value of $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$ is (i) 0 fil) π (iii) π/2 (iv) ∞

VERY SHORT ANSWER TYPE

(1 MARK QUESTIONS)

2016

2.	Write	veгy	short	answer	for	each	of	the
	follow	ing qu	estion	s :				

- (a) State Cauchy's mean value theorem.
- (b) In the mean value theorem

f(b) = f(a) + (b - a) f'(c)

If $f(x) = 2x^2$, a = 0 and b = 2, then what is the value of c?

- (c) Write Taylor's finite series expansion for e^{a+n} , with remainder after *n* terms.
- (d) Give reason why the mean value theorem is not applicable to the function f(x) = |x| in the interval [-2, 2].
- (e) State the reason for the failure of applicability of the Euler's theorem on the function $\sin(x+y)$.
- (f) The interval [a, b] is divided into n equal subintervals, each of length h by the points $x_0 = a$, $x_1, x_2, \dots, x_n = b$. Represent $\int_a^b e^{kx} dx$ as limit of sum, k being a constant.
- (g) Write down the reduction formula for

$$I_n = \int_0^{\pi/2} \cos^n x \, dx$$

(h) Show in a diagram the region of integration of the integral

$$\int_0^2 dx \int_x^{\sqrt{2x}} f(x, y) \, dy$$

.7 1

(i) Evaluate :

 $\int_0^1 \int_0^y 8xy \, dx \, dy$

(j) Is the differential equation

$$(e^x + xy^2)dx = x^2ydx$$

- exact?
- (k) What is the complementary function of $(D^4 + 2D^2 + 1)y = \sin 2x$?
- (1) What is the particular integral of $(D^2 + 4)y = e^{-2x}$?

- (a) Is Lagrange's mean value theorem applicable to the function f(x) = |x| in the interval [-1, 1]? Give reason of your answer.
- (b) Write Cauchy's remainder after n terms in the expansion of sin x.

(c) Evaluate
$$\frac{1}{(D-3)^2}e^{3x}$$
.

- (d) State L' Hospital's theorem.
- (e) Write Maclaurin's series in finite form.
- (f) Find the radius of curvature of the curve

$$s = a\log \tan\left(\frac{\pi}{4} + \frac{\Psi}{2}\right)$$

at the point (s, ψ).

(g) Express $\int_{a}^{b} f(x) dx$ as the limit of a sum.

- (h) If $x = r \cos\theta$ and $y = r \sin\theta$, then find $\frac{\partial(x, y)}{\partial(r, \theta)}$.
- (i) Show in a diagram the region of integration of the integral

$$\int_0^1 dx \int_x^{1/x} \frac{y \, dy}{(1+xy)^2 (1+y^2)}$$

- (j) Write down the complete primitive of Clairaut's equation y = px + f(p) where $p = \frac{dy}{dx}$.
- (k) Define singular solution of a differential equation.
- (l) What is meant by a singular point of the differential equation

$$f(x)\frac{d^2y}{dx^2} + g(x)\frac{dy}{dx} + r(x)y = 0?$$

···· "

-		N
	a)	Is Rolle's Theorem applicable to the function $f(x) = \tan x$ in
		the interval $[0, \pi]$? Give reason of your answer.
	b)	State Cauchy's mean value theorem.
	c)	What is meant by an indeterminate form?
	d)	If $f(x) = e^x$, find the value of c in the mean value theorem $f(b)$
		-f(a) = (b - a)f'(c), where $a = 0$ and $b = 1$.
	e)	Evaluate $\int e^{ax} \cos bx dx$.
		j=
	f)	Express $\int_{0}^{1} f(x) dx$ as the limit of a sum.
	g)	If $x = u(1+v)$ and $y = v(1+u)$, find $\frac{\partial(x, y)}{\partial(u, v)}$.
		If $x = u(1+v)$ and $y = v(1+u)$, find $\frac{\partial(u,v)}{\partial(u,v)}$.
	h)	Write down the expression for the radius of curvature of the
		Cartesian equation $y = f(x)$.
	i)	Change the order of integration in the integral
		$\int_0^1 dx \int_{-\infty}^{\sqrt{x}} f(x, y) dy.$
	j)	What is the condition for integrability of the total differential
	• •	equation $Pdx + Qdy + Rdz = 0$?

k) Give the geometrical interpretation of $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$.

I) What is meant by a homogeneous linear equation?

2019

- (a) Write down the general solution of the differential equation $(D+2)^3 y = 0$.
- (b) Give geometrical interpretation of Lagrange's mean value theorem.
- (c) Prove by the method of summation, that

$$\int_{a}^{b} dx = b - a$$

- Write down Maclaurin's series in finite (d) form.
- (e) If $f(x) = Ax^2 + Bx + C$, then find the value of $\boldsymbol{\xi}$ in the mean value theorem

 $f(b) - f(a) = (b - a) f'(\xi)$

Write down the complete primitive of (f) Clairaut's equation y = px + f(p), where $p = \frac{dy}{dx}.$

(g) Show in a diagram the region of integration of the integral

$$\int_0^2 dx \int_x^{\sqrt{x}} f(x, y) dy$$

- (h) What is meant by the curvature of a curve?
- (i) Evaluate $\int_0^1 \int_0^y xy \, dx \, dy$.
- (j) If $x = r \cos \theta$ and $y = r \sin \theta$, then find $\frac{\partial (r, y)}{\partial x}$

$$\frac{\partial(x, y)}{\partial(r, \theta)}$$

(k) Give the geometrical interpretation of

Pdx + Qdy + Rdz = 0

(1) State L' Hospital's theorem.

SHORT ANSWER TYPE

(3 MARKS QUESTIONS)

2016

- Write short answer for each of the following questions :
 - (a) Using ε-δ definition of continuity, show that

$$f(\mathbf{x}) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x \neq 0 \end{cases}$$

(b) If $x = \tan(\log y)$, then prove that

is

$$(1 + x2) yn+2 + (2nx + 2x - 1) yn+1+ n(n+1) yn = 0$$

(The symbols have their usual meanings.)

- (c) Verify Rolle's theorem for the function $f(x) = e^{-x} \sin x$ in the interval $[0, \pi]$.
- (d) By using Maclaurin's theorem, expand $(1 + x)^m$, where $x \in \mathbb{R}$ and m is a positive integer.
- (e) By using L' Hospital's rule, show that

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1/x} = 1$$

(f) If H = f(y - z, z - x, x - y), then prove that

$$\frac{\partial H}{\partial x} + \frac{\partial H}{\partial y} + \frac{\partial H}{\partial z} = 0$$

- (g) Find the radius of curvature at the point t on the parabola x = 2at, $y = at^2$.
- (h) If f is integrable on [a, b] (a < b), and if there exists a function of such that $g'(x) = f(x) \quad \forall x \in [a, b]$, then prove that

$$\int_{a}^{b} f(x) dx = g(b) - g(a)$$

- (i) Determine the length of an arc of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 \cos \theta)$ measured from the vertex. Hence or otherwise obtain the length of a complete cycloid.
- (j) If x + y + z = u, y + z = uv, z = uvw, then show that

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = u^2 v$$

(k) Evaluate the integral

$$I = \int_0^1 dx \, \int_0^x \sqrt{x^2 + y^2} \, dy$$

by passing or to the polar coordinates.

(1) Prove that the singular solution of

$$z = px + \frac{a}{p}; \quad p = \frac{dz}{dx}$$

is the parabola $z^2 = 4ax$.

- (m) Find the orthogonal trajectories of the family of straight lines w = mv, where m is the parameter.
- (n) Solve :

$$x^2 \frac{d^2 y}{dx^2} - 5x \frac{dy}{dx} + 9y = 0$$

(o) Discuss the nature of the points x = 1and x = -1 of

$$(x+1)(x^{2}-1)\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} - y = 0$$

Also, if it is a singular point, state whether regular or irregular.

- Write short answer for each of the following questions : 3×15=45
 - (a) Using $(\varepsilon \delta)$ definition of limit, prove that

$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$$

(b) If $y = \tan^{-1} x$, then prove that

$$(1 + x^2) y_{n+1} + 2nxy_n + n(n-1)y_{n-1} = 0$$

271

(c) Prove that

$$\lim_{x \to 0} \frac{(1+x)^{1/x} - e}{x} = -\frac{1}{2}e$$

(d) Show that

$$\lim_{(x,y)\to (0,0)} \frac{1}{x^2 + y^2}$$

(e) If v=f[x], w being a humageneous function of degree n in x and y, then show that

does not erist.

$$x\frac{\partial v}{\partial x} + y\frac{\partial v}{\partial y} = nu\frac{dv}{du}$$

- (f) Show that the function $f(x, y) = 5x^4 + 3x^2y + y^2$ has a minimum at (0, 0).
- (g) Find the asymptotes of the curve $x^3 + 2x^2y + xy^2 x + 1 = 0$.
- (h) If $u_n = \int_0^{\pi/2} \theta \sin^n \theta \, d\theta$, n > 1, then prove that

$$u_n = \frac{n-1}{n}u_{n-2} + \frac{1}{n^2}$$

(i) Find the length of the arc of the curve

$$x = e^{\theta} \sin \theta$$
$$y = e^{\theta} \cos \theta$$

(j) Prove that

$$\int_0^1 dx \int_0^1 \frac{x-y}{(x+y)^3} dy = \frac{1}{2}$$

(k) Show that the volume of a right circular cone of height h and base of radius r is $\frac{1}{3}\pi r^2 h$.

(1) Solve :

$$\frac{dx}{x(y^2-z^2)} = \frac{dy}{y(z^2-x^2)} = \frac{dz}{z(x^2-y^2)}$$

(m) Show that the solution of

$$\frac{d^2y}{dx^2} + k\frac{dy}{dx} + \mu y = 0$$

is
$$y = e^{-\frac{kx}{2}} (A\cos nx + B\sin nx)$$
 if $k^2 < 4\mu$
and $n^2 = \mu - \frac{1}{4}k^2$.

(n) Find the singular solution of the equation $y = px + \sqrt{a^2 p^2 + b^2}$

where
$$p = \frac{dy}{dx}$$
.

(o) Find the particular integral of $(D^2 - D - 2)y = \sin 2x$.

2018

Answer each of the following questions: 3×5=15

- a) Using $\in -\delta$ definition of continuity, prove that the function $f(x) = x^2 + 2x 1$ is continuous at x = 2.
- b) If $y = \sin(m \sin^{-1}x)$, show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0.$ c)

Evaluate:
$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{y_x}.$$

- d) If u be a homogeneous function of x and y of degree n, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$.
- e) Find $f_{xy}(0,0)$ for the function f given by

$$f(x, y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}, (x, y) \neq (0, 0)$$

$$f(0, 0) = 0.$$

f) Show that the asymptotes of the curve $x^2y^2 = a^2(x^2 + y^2)$ form a square of side 2a.

- g) Show that the function $f(x, y) = 3x^3 + 4x^2y 3xy^2 4y$ has neither a maximum nor a minimum at the origin.
- h) If $I_n = \int_0^{\pi/2} \tan^n \theta d\theta$, prove that $n(I_{n+1} + I_{n-1}) = 1$.
- i) Obtain the intrinsic eauation of the catenary $y = c \cos \frac{x}{c}$ in the form $s = c \tan \psi$.
- j) Evaluate the integral $\int_0^1 dx \int_0^x \sqrt{x^2 + y^2} dy$ by passing on to the polar coordinates.
- k) Prove that the volumes of the ellipsoid formed by the revolution of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the major axis is $\frac{4}{3}\pi ab^2$.

1) Solve: $\frac{adx}{(b-c)yz} = \frac{bdy}{(c-a)zx} = \frac{cdz}{(a-b)xy}$.

m) Find the complete primitive of $p^2 + 2xp - 3x^2 = 0$, where $p = \frac{dy}{dx}$.

K4

n) Solve: $(D^2 - 2mD + m^2 + n^2)y = 0$.

o) Solve: $(D^2 - 4)y = \sin 2x$.

2019

(a) Using
$$\varepsilon$$
- δ definition of limit, prove that

$$\lim_{x \to 2} (x^2 - 3x + 5) = 3$$

- (b) If $u = \phi(H_n)$, where H_n is a homogeneous function of degree n in x, y, z, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = n \frac{F(u)}{F'(u)}$, where $F(u) = H_n$.
- (c) If $u_n = \int_0^{\pi/2} x^n \sin x \, dx$, $(n \ge 1)$, then show that $u_n + n(n-1)u_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}$.
- (d) Find the singular solution of the equation $y = px + \frac{a}{p}$, where $p = \frac{dy}{dx}$.
- (e) Show that the volume of a right circular cone of height h and base of radius r is

$$\frac{1}{3}\pi r^2h$$

(f) Solve :

$$\frac{dx}{z(x+y)} = \frac{dy}{z(x-y)} = \frac{dz}{x^2 + y^2}$$

(g) Show that if $l\frac{d^2\theta}{dt^2} + g\theta = 0$, and if $\theta = \alpha$ and $\frac{d\theta}{dt} = 0$ when t = 0, then

$$\theta = \alpha \cos\{t\sqrt{g/l}\}$$

(h) Solve :

$$\frac{dy}{dx} + \frac{y}{x}\log y = \frac{y}{x^2}(\log y)^2$$

- (i) Find the perimeter of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$
- (i) Evaluate :

$$\lim_{x\to 0} (\cos x)^{1/x}$$

- (k) Show that $\lim_{(x, y)\to(0, 0)} xy \frac{x^2 y^2}{x^2 + y^2} = 0.$
- (l) If $y = a \cos(\log x) + b \sin(\log x)$, then prove that

$$x^{2}y_{n+2} + (2n+1)xy_{n+1} + (n^{2}+1)y_{n} = 0$$

- (m) Find the envelope of the family of straight lines $y = mx + \sqrt{a^2m^2 + b^2}$, m being the parameter.
- (n) Show that the function $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ has a maximum at (4, 0).
- (o) Prove that

$$\int_0^1 dy \int_0^1 \frac{x - y}{(x + y)^3} dx = -\frac{1}{2}$$

(6 MARKS QUESTIONS)

2016

4. (a) If

$$f(u, v) = uv \frac{u^2 - v^2}{u^2 + v^2}, \text{ when } u^2 + v^2 \neq 0$$

= 0, when $u = v = 0$

then show that $f_{\mu\nu}(0, 0) \neq f_{\nu\mu}(0, 0)$.

Or

Show that the function

$$f(x, y) = 4x^2 - xy + 4y^2 + x^3y + xy^3 - 4$$

is minimum at (0, 0) while the points

$$\left(\frac{3}{2}, -\frac{3}{2}\right)$$
 and $\left(-\frac{3}{2}, \frac{3}{2}\right)$

are saddle points of f.

(b) If
$$\rho_1$$
 and ρ_2 be the radii of curvature at
the ends M and N of the conjugate
diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,

then prove that

$$\rho_1^{2/3} + \rho_2^{2/3} = \frac{a^2 + b^2}{(ab)^{2/3}}$$
 6

Or Find the asymptotes of the curve

$$y^{3} - 6xy^{2} + 11x^{2}y - 6x^{3} +$$

 $y^{2} - x^{2} + 2x - 3y - 1 = 0$

6

ŧ

5. (a) Obtain a reduction formula for

$$I_{m, n} = \int \cos^m x \sin^n x \, dx$$

where m and n are positive integers. Hence, find a reduction formula for

$$\int_0^{\pi/2} \cos^m x \sin^n x \, dx$$

6

6

6

6

Or

Obtain the area common to the cardioid $r = 2a(1 + \cos\theta)$ and the circle r = 3a, and also the area of the remainder of the cardioid.

(b) The part of the parabola $y^2 = 2ax$ bounded by the latus rectum revolves about the tangent at the vertex. Find the volume and the area of the curved surface of the reel thus generated.

Or

Find the volume and surface area of the solid generated by revolving the cardioid $r = 2a(1 + \cos\theta)$ about the initial line.

6. (a) Prove that $e^{\int Pdx}$ is an integrating factor of the linear equation

$$\frac{dy}{dx} + P_y = Q$$

P and Q are the functions of x alone or constants. Hence or otherwise solve the equation

$$e^{x^3} \frac{dy}{dx} + 3x^2 e^{x^3} y = 4x^3$$
 6

Or

If $f(z) dx - xz \log z dy - xy dz = 0$ is integrable, determine f(z) and also, find the solution of the differential equation.

(b) Solve :

6

6

6

$$(D^2 - 4D + 1)y = e^{2x}(x^2 + \sin 2x)$$

Or

Solve :

$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + 2y = 3x \log x$$

2017 4. (a) State and prove Rolle's theorem. 6 Or State and prove Taylor's theorem with 6 Lagrange's form of remainder. (b) Show that for the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, the radius of curvature at an extremity of the major axis is equal to half the latus 6 rectum. Or If ρ_1 and ρ_2 be the radii of curvature at the ends of a focal chord of the parabola $y^2 = 4ax$, then prove that $\rho_1^{-2/3} + \rho_2^{-2/3} = (2a)^{-2/3}$ 6 5. (a) If f(x) and g(x) are integrable in [a, b] and if g(x) maintains the same sign throughout [a, b], then prove that $\int_{a}^{b} f(x) g(x) dx = \mu \int_{a}^{b} g(x) dx$ where $m \le \mu \le M$, m and M being the lower and upper bounds of f(x) in [a, b]. 6 Or State and prove the fundamental 6 theorem of integral calculus. (b) Evaluate $\iint \sqrt{4a^2 - x^2 - y^2} \, dx \, dy$ taken over the upper half of the circle $x^2 + y^2 - 2ax = 0.$ 6 Or If u, v, w are the roots of the equation in λ , such that $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$ then prove that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = \frac{-2(x - y)(y - z)(z - x)}{(u - v)(v - w)(w - u)}$ 6 6. (a) If $\frac{\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}}{Q} = f(x)$ then prove that $e^{\int f(x) dx}$ is an integrating factor of the equation Pdx + Qdy = 0. 6 Or Obtain the condition for integrability of the total differential equation 6 Pdx + Qdy + Rdz = 0(b) Find the power series solution of $(1-x^2)\frac{d^2y}{dx^2} + 2y = 0$ 6 6

Solve : $(x^2D^2 + xD - 1)y = \sin(\log x)$

4. a) Show that
$$\frac{b-a}{1+b^2} \langle \tan 2018 \qquad \frac{b-a}{1+a^2}$$
, $0\langle a \rangle \langle b \rangle$ and deduce that
 $\frac{\pi}{4} + \frac{3}{25} \langle \tan^{-1}\frac{4}{3} \langle \frac{\pi}{4} + \frac{1}{6} \rangle$. OR

Show that $\frac{\lim_{h \to 0} \theta = \frac{1}{n+1}}{h \to 0}$, where θ is given by $f(a+h) = \frac{1}{n+1}$ $f(a) + hf(a) + \frac{h^{1}}{2}f''(a) + \dots + \frac{h^{n-1}}{n-1}f^{n-1}(a) + \frac{h^{n}}{n}f^{n}(a+\theta h)$ provided $f^{n+1}(x)$ is continuous at a and $f^{n+1}(a) \neq 0$. Show that for the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, the radius of curvatureat any point ρ is given by $\rho = \frac{\sigma^2 b^2}{\rho^2 \phi}$, where $\bar{\rho}$ is the

perpendicular from the centre on the tangent at ρ . OR

Find the radius of curvature of the curve $y = xe^{-3}$ at (s maximum point.

5. a) Evaluate $\int_{a}^{b} \cos x dx$ by the method of summation. OR

Evaluate: $\lim_{n \to \infty} \left\{ 1 + \frac{1^2}{n^2} \right) \left(1 + \frac{2^2}{n^2} \right) \dots \left(1 + \frac{n^2}{n^2} \right)^{\frac{1}{2}}.$

5. b) By changing the order of integration, prove that $\int_0^1 dx \int_x^{y_x} \frac{y^2 dy}{(x+y)^2 \sqrt{1+y^2}} = \sqrt{2} - \frac{1}{2}.$

6

6

0

If α , β , γ are the roots of the equation in *t*, such that

$$\frac{u}{a+t} + \frac{v}{b+t} + \frac{w}{c+t} = 1,$$

prove that
$$\frac{\partial(u, v, w)}{\partial(\alpha, \beta, \gamma)} = -\frac{(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)}{(a-b)(b-c)(c-a)}.$$

Show that the system of confocal conics $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$ a) is self orthogonal.

OR

Obtain the condition for exactness of the differential equation Mdx + Ndy = 0.

b) Solve: $(x^2D^2 + xD + 1)y = \sin(\log x^2)$. OR

6

Find power series solution of the initial value problem $(1-x^2)y'' + 2y = 0, y(2) = 4, y'(2) = 5.$

6.

b)

4. (a) State and prove Cauchy's mean value theorem. 6

Or

State and prove Rolle's theorem.

(b) Show that radius of curvature at any point of the astroid $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ is equal to three times the length of the perpendicular from the origin to the tangent.

Or

Show that for the curve $y = \frac{ax}{a+x}$

$$\left(\frac{2\rho}{a}\right)^{2/3} = \left(\frac{x}{y}\right)^2 + \left(\frac{y}{x}\right)^2$$

5. (a) State and prove fundamental theorem of integral calculus.

От

If M and m are the least upper and greatest lower bounds of the integrable function f(x) in [a, b], b > a, then prove that $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$.

(b) By changing the order of integration, prove that

$$\int_{0}^{1} dx \int_{0}^{\sqrt{1-x^{2}}} \frac{dy}{(1+e^{y})\sqrt{1-x^{2}-y^{2}}} = \frac{\pi}{2} \log\left(\frac{2e}{1+e}\right) = 6$$

Or If u = xyz, $v = x^2 + y^2 + z^2$, w = x + y + z, then find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.

6. (a) Show that the family of parabolas $y^2 = 4a(x+a)$ is self-orthogonal. 6

Or

Find f(y), if $f(y) dx - 2xdy - xy \log ydz = 0$ is integrable. Find the corresponding integral.

(b) Solve :

$$(x+2)^2 \frac{d^2 y}{dx^2} - 4(x+2)\frac{dy}{dx} + 6y = x$$

Or

Find the power series solution of

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} = x$$

6

1

6

6