NAMBOL L. SANOI COLLEGE, NAMBOL

DEPARTMENT OF MATHEMATICS

QUESTION BANK FOR MATHEMATICS

PREVIOUS 4 YEARS (2016-2019)

SEMESTER V

OBJECTIVE TYPE

(1 MARK QUESTIONS)

2016

MATHEMATICS

(Honours)

SIXTH PAPER

(Real Analysis)

 Choose and rewrite the correct answer for each of the following questions : 1×5=5

(a) For a sequence $\{u_n\}$, where

 $\begin{bmatrix} 0 & \text{if } n = 4k \\ 3 & \text{if } n = 4k+1 \end{bmatrix}$

 $u_n = \begin{cases} 3 & \text{if } n = 4k + 1 \\ -7 & \text{if } n = 4k + 2 \\ 5 & \text{if } n = 4k + 3, \ k = 0, \ 1, \ 2, \ 3, \ \cdots \end{cases}$

the values of $\overline{\lim} u_n$ and $\underline{\lim} u_n$ are respectively

- (i) 0 and 3
- (ii) 3 and 0
- (iii) -7 and 5

(iv) 5 and -7

- (b) If f is a bounded function defined on [a, b] and P is a partition of [a, b] and P* is the refinement of P, then the false result is
 - (i) $L(P, f) \leq L(P^*, f)$
 - (ii) $L(P, f) \leq U(P, f)$
 - (iii) $U(P, f) \le U(P^*, f)$
 - (*iv*) $U(P, f) \ge U(P^*, f)$

(c) Convergence in $\int_0^1 \frac{1}{x^p} dx$ and $\int_0^\infty \frac{1}{x^q} dx$ are for what values of p and q?

- (i) p < 1 and q < 1
- (ii) p < 1 and q > 1

(iii) p > 1 and q > 1

(iv) p > 1 and q < 1

(d) If f(x, y) is differentiable at a point (2, 3), then the false conclusion is

(i) f is continuous at (2, 3)

(ii) f is discontinuous at (2, 3)

- (iii) f_x and f_y exist at (2, 3)
- (iv) simultaneous limit of f exists at (2, 3)
- Stokes' theorem gives means of (e) converting
 - (i) a line integral to a double integral
 - (ii) a line integral to a surface integral
 - (iii) a line integral to a triple integral
 - (iv) a surface integral to a triple integral

2018

(a) For the sequence $\{u_n\}$ where $\begin{bmatrix} 3, & \text{if } n = 3k \end{bmatrix}$

$$u_n = \begin{cases} -5, & \text{if } n = 3k - 1 \\ 4, & \text{if } n = 3k - 2, \quad k \ge 1 \end{cases}$$

-

The values of the $\lim u_n$ and $\lim u_n$ are respectively

- (i) 3 and 4
- (ii) 4 and -5 (iii) -5 and 4 (iv) 4 and 3
- (b) If f(x) = 3x 2 and $p = \{0, 3, 4, 6\}$ is a partition of [0, 6], then the value of oscillatory sum w(p, f) is
 - (i) 26
 - (ii) 42
 - (iii) 24

(iv) 62

The improper integrals (c)

$$\int_{1}^{\infty} \frac{1}{x^{m}} dx \text{ and } \int_{0}^{1} \frac{1}{x^{n}} dx$$

- are both convergence if
- (i) m > 0 and n > 0
- (ii) m < 1 and n > 1
- (iii) m < 1 and n < 1
- (iv) m > 1 and n < 1

(d) If f_{xy} and f_{yx} are both continuous at (1,2), then

(i) $f_{xy}(1, 2) = f_{xx}(1, 2)$ (ii) $f_{xy}(1, 2) = f_{yy}(1, 2)$ (iii) $f_{xx}(1, 2) = f_{yy}(1, 2)$ (iv) $f_{xy}(1, 2) = f_{yx}(1, 2)$

The value of the triple integral (e) ∭xyzdx dy dz

	v				
where		is	the	para	llelopiped
[0, 4 :	0, 3; 0,	2] is			
<i>(i)</i> 1	2				
(ii) 3	36				•
(iii) 7	2				
(iv) 5	576				

	2011	
(a)	sequence where $u_n = \begin{cases} 20 & \text{, for } n = 1 \\ \text{least prime factor of } n, \text{ for } n > 1 \end{cases}$	
	is (") OO	
	(i) 0 (ii) 20	
	(iii) two only (iv) infinite	
	(b) If $[x]$ denotes the greatest integer not exceeding x, then $\int_{1}^{3} [x] dx$ equals	
	<i>(i)</i> 1	
	. (ii) 2	
	(iii) 3	
	(iv) 4	
	(c) The number of points of infinite discontinuity of the improper integral $\int_{-4}^{6} \frac{(x-4) dx}{(x^2-9)(x^2-4)(x^2-5x+6)(x^2+5x-6)}$	
	is	
	<i>(i)</i> 3	
	(ii) 4	
	<i>(iii)</i> 5	
	<i>(iv)</i> 6	
	(d) If $\phi(x, y)$ is differentiable at a point (a, b), then the false conclusion is	
	(i) $\phi(x, y)$ is continuous at (a, b)	1
	(ii) $\phi(x, y)$ is discontinuous at (a, b)	
	(iii) ϕ_x and ϕ_y exist at (a, b)	
	(iv) simultaneous limit of ϕ exists at	
	(a, b)	
	(e) The length of the curve $x = a\cos\theta$, $y = a\sin\theta$, $z = a\theta$ from $\theta = 0$ to $\theta = 2\pi$ is (i) $a\pi$	
	(ii) $\sqrt{2}\alpha\pi$	
	(iii) 2an	
	$(iv) 2\sqrt{2}a\pi$	

VERY SHORT ANSWER TYPE

(1 MARK QUESTIONS)

2016

2.	Write very short answer for each of the 1×8=8	·
	(a) State nested interval theorem.	
	(b) When is a function f said to be discontinuity of second kind at $x = a$?	
,	(c) If $f(x) = x - 6$ and $p = \{0, 3, 4, 6\}$ is a partition [0, 6], then find the value of	
	w(p, f).	
	(d) Write the value of $\Gamma\left(\frac{3}{2}\right)$.	
	(e) State Dirichlet's test for convergence of improper integral.	
	(f) State Young's theorem on the reversal of order of partial derivation.	
	(g) If $z = e^{xy^2}$, $x = t \cos t$, $y = t \sin t$, find $\frac{dz}{dt}$.	
	(h) State Stokes' theorem.	

:

2017

- (a) Give an example of a sequence which has an infinite number of limit points.
- (b) Give an example of a continuous function which is not bounded in a finite open interval.
- Give an example of a non-integrable (c) function f such that |f| is integrable.
- State Frullani's improper integral (d) theorem.
- State Abel's test (for convergence of (e) improper integral).
- (f) When is a function said to be differentiable at a point (x, y)?

(g) Find
$$\frac{\partial^2 z}{\partial x \partial y}$$
, when $z = 2x^3y^4$.

(h) If $D = \{(x, y) : x^2 + y^2 \le 3\}$, then express $\iint_{D} f(x, y) \, dx \, dy$

as a repeated integral.

- (a) Define an open set.
- When is a function said to be (b) discontinuity of the second kind at x = a?
- (c) Is the sum of two non-integrable functions necessarily non-integrable? Give an example in support of your answer.
- (d) Write all the points of infinite discontinuity of the integrand of the integral

 $\int_0^7 \frac{1}{(x^2 - 1)(x^2 - 4)(x^2 - 5x - 6)(x^2 - 5x + 6)} dx$

- (e) State Dirichlet's test for convergence of improper integral.
- When is a function said to be (f) differentiable at the point (x, y)?
- Examine the equality of f_{xy} and f_{yx} , where $f(x, y) = e^{2xy}$. (g)
- (h) If $D = \{(x, y) : x^2 + y^2 \le 12\}$, then express 'the double integral $\iint_{D} f(x, y) dx dy$

as a repeated integral.

2019

- Define limit point of a given set S of real (a) numbers.
- Verify by giving an example that a (b) function continuous in an open interval need not be bounded therein.
- Is the product of two non-integrable (c) functions necessarily non-integrable? Give an example to support your answer.
- (d) For what values of n the improper integral $\int_{1}^{\infty} \frac{1}{x^{n}} dx$ convergent?
- State Abel's test (for convergence of (e) improper integral).
- Find $\frac{\partial^3 z}{\partial x \partial y^2}$, where $z = x^4 y^3$. (f)
- (g) If $z = x^3 xy + y^3$, $x = r \cos \theta$ $y = r \sin \theta$, then find $\frac{\partial z}{\partial r}$. and
 - (h) If $D = \{(x, y) : x^2 + y^2 \le 8\}$, then express $\iint_D f_{(x, y)} dx \, dy$

as repeated integral.

SHORT ANSWER TYPE

(3 MARKS QUESTIONS)

2016

- 3. Write short answer for each of the following questions : 3×13=39
 - (a) Prove that the union of an arbitrary family of open sets is open. Is arbitrary intersection of open sets necessarily open? Give an example.
 - (b) Show that every bounded sequence has a limit point.
 - (c) Show that the sequence $\{\delta_n\}$, where

$$\delta_n = \left(1 + \frac{1}{n}\right)^n$$

is convergent and that $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ lies

between 2 and 3.

(d) Let f be a function on R defined by

 $f(x) = \begin{cases} 1, \text{ when } x \text{ is rational} \\ -1, \text{ when } x \text{ is irrational} \end{cases}$

Show that f is discontinuous at every point of R.

- (e) If a and b be any two positive real numbers, then show that there exists a positive integer n such that na > b.
- (f) Prove that every monotonic function is R-integrable.
- (g) If a function f is bounded and integrable on each of the interval [a, c], [c, b], [a, b], where c is a point of [a, b], then prove that

$$\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx$$

(h) Test the convergence of the improper integral

$$\int_{3}^{5} \frac{x^2 dx}{\sqrt{(x-3)(5-x)}}$$

(i) By using Frullani's improper integral theorem, prove that

$$\int_0^\infty \frac{\cos ax - \cos bx}{x} \, dx = \log\left(\frac{b}{a}\right)$$

where a, b > 0 and deduce that

$$\int_0^\infty \frac{\sin ax \sin bx}{x} \, dx = \frac{1}{2} \log \left(\frac{a+b}{a-b} \right)$$

() Show that the function f, where

$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0\\ 0, & x = y = 0 \end{cases}$$

is not differentiable at the origin.

1

١

$$f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0.$

(l) Evaluate by changing the order of integration

$$\int_0^{2a} dx \int_{\sqrt{2ax-x^2}}^{\sqrt{2ax}} f dy$$

(m) Find the surface area of that part of the cone $z^2 = x^2 + y^2$ which lies inside the cylinder $x^2 + y^2 = 2x$.

2017

- (a) Define an open set. Show that every open interval is an open set.
- (b) The derived set of every set is a closed set.
- (c) Prove that bounded and monotonically decreasing sequence converges to its infimum.
- (d) Define subsequence of a sequence. Show that every subsequence of a convergent sequence converges to the same limit.
- (e) Let f be defined on Q (the set of all rational numbers) in the following manner :

$$f(x) = \begin{cases} 5 & \text{if } x < 2\pi \\ -3 & \text{if } x > 2\pi, x \in Q \end{cases}$$

Show that f is continuous on Q but not uniformly on Q.

(f) If $f(x) = 2\sin x$ and $P = \{0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{5\pi}{6}\}$ be a partition of $[0, \frac{5\pi}{6}]$, find—

- (i) the oscillation of the function on [0, 5π/6];
 (ii) U(P, f);
 (iii) L(P, f).
 [The symbols have their usual meanings.]
- (g) If f is bounded and integrable on [a, b] and $\phi(x) = \int_a^x f(t) dt \quad \forall x \in [a, b]$, prove that ϕ is continuous on [a, b].

(h) Examine the convergence of the improper integral

$$\int_0^3 \frac{dx}{x^{2/3}(3-x)^{1/4}}$$

(i) Show that $\int_0^{\pi/2} \sin x \log \sin x \, dx$ is convergent with the value $\log (2/e)$.

(j) If
$$f(x, y) = \frac{3xy(x^2 - y^2)}{x^2 + y^2}$$
, $(x, y) \neq (0, 0)$ and $f(0, 0) = 0$, then find $f_{yx}(0, 0)$.

- (k) If u = F(x, y, z) and z = f(x, y), then find the formula for $\frac{\partial^2 u}{\partial x^2}$ in terms of the derivatives of F and the derivatives of z (assuming F and f are differentiable).
- (l) Using the line integral, find the area of the ellipse $x = a\cos\theta$, $y = b\sin\theta$.
- (m) Evaluate the surface integral

 $\iint_{S} (xdydz + ydzdx + zdxdy)$

with the help of Gauss' theorem over the surface of the parallelopiped [0,3; 0,4; 0,2].

2018

- (a) If a and b be any two positive real numbers, then show that there exists a positive integer n such that na > b.
- (b) Show that the complement of an open set is a closed set.
- (c) Every convergent sequence is a Cauchy sequence but not the converse. Prove this.
- (d) Show that the sequence $\{u_n\}$ where

$$u_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$$

is convergent.

- (e) Prove that a function which is uniformly continuous on [a, b] is continuous on [a, b].
- (f) Prove that every continuous function on [a, b] is R-integrable on [a, b].

(g) If

$\int_a^o f(x)\,dx$

exists, then show that

$$\left|\int_{a}^{b} f(x) dx\right| \leq \left|\int_{a}^{b} |f(x)| dx\right|$$

(h) Test the convergence of

 $\int_0^1 \log x^5 dx$

(i) Test the convergence of

$$\int_{\pi/2}^{\pi} \frac{\sqrt{x}}{\sin x} dx$$

(j) Show that the function f, where

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & \text{if } x^2 + y^2 \neq 0\\ 0, & \text{if } x = y = 0 \end{cases}$$

is not differentiable at the origin.

(k) If
$$f(x, y, z) = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$$
, show that
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$$

(l) By Changing the order of integration, prove that

$$\int_{0}^{t} dx \int_{0}^{x} f(y) dy = \int_{0}^{t} (t - y) f(y) dy$$

(m) Find the value of

$$\int (x^2 y \, dx - y^2 x \, dy)$$

taken along the circle $x^2 + y^2 = 4$ in the counter-clockwise sense.

- (a) Define an open set and show that the arbitrary union of open sets is open.
- (b) Prove that derived set of every set is a closed set.
- (c) Every convergent sequence is a Cauchy sequence but not the converse. Prove it.
- (d) Prove that a bounded and monotonically decreasing sequence converges to its greatest lower bound.
- (e) If a function f is continuous in the closed interval [a, b] and $f(a) \neq f(b)$, then prove that f assumes every value between f(a) and f(b).
- (f) Show that if f is monotonically increasing in [a, b], then it is integrable in [a, b].
- (g) State and prove the fundamental theorem of integral calculus.

(h) Examine the convergence of the improper integral

$$\int_0^2 \frac{dx}{x^{\frac{1}{4}}(2-x)^{\frac{2}{3}}}$$

(i) Show that $\int_0^{\pi/2} \sin x \log \sin x \, dx$ is convergent with the value $\log(2/e)$.

(i) If

$$f(x, y) = \frac{2xy(x^2 - y^2)}{x^2 + y^2}, (x, y) \neq (0, 0)$$

and f(0, 0) = 0, then find $f_{xy}(0, 0)$.

(k) If (i) x, y be differentiable functions of a single variable t and (ii) z is differentiable function of x and y, then show that z possesses continuous derivative with respect to t and

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

(l) By using Green's theorem on plane, convert the line integral

$$\int_C (x^2 y \, dx + x y^2 \, dy)$$

taken along the unit circle $x^2 + y^2 = 1$, into a double integral and hence evaluate it.

(m) Prove by using Gauss divergent theorem that

 $\iint\limits_{S} (x \, dy \, dz + y \, dz \, dx + z \, dx \, dy) = 81$

where S is the outer surface of the cube [0, 3; 0, 3; 0, 3]

(6 MARKS QUESTIONS)

2016

 (a) State and prove Cauchy's general principle of convergence (for sequence). 1+5=6

Or

State and prove Bolzano-Weierstrass theorem (for sets). 1+5=6

(b) Prove that every uniformly continuous function is continuous on that interval. By giving a suitable example, show that the converse of the above statement is not true.

Or

Prove that if a function f is continuous in [a, b], then it is bounded.

 5. (a) State a necessary and sufficient condition for Riemann integrability of a bounded function f on an interval [a, b] and prove the same.

Or

Prove that the oscillation of a bounded function f on an interval [a, b] is the supremum of the set

 $\{|f(x_1) - f(x_2)| : x_1, x_2 \in [a, b]\}$

(b) If f is bounded and integrable on [a, b], then prove that |f| is also bounded and integrable on [a, b] and

 $|fdx| \leq$

6

6

Or

If f be a bounded function on [a, b] and f has a finite number of limit points of its points of discontinuity, then prove that f is integrable on [a, b].

6. (a) Show that the integral and for

 $\int_0^{\pi/2} \log \sin x \, dx$

is convergent and evaluate it.

6

(

Or

Test the convergence of the improper integral $\int_0^\infty e^{-x} x^{x-1} dx$.

(b) Show that for the function

$$f(x, y) = xy \frac{(x^2 - y^2)}{x^2 + y^2}, (x, y) \neq (0, 0)$$

f(0, 0) = 0 does not satisfy the condition of Schwarz's theorem and

 $f_{xy}(0,\,0) \neq f_{yx}(0,\,0)$

Or

If z is a function of u and v and $u = x^2 - y^2$, v = 2xy, prove that

$$4(u^{2} + v^{2})\frac{\partial^{2}z}{\partial u\partial v} + 2u\frac{\partial z}{\partial v} + 2v\frac{\partial z}{\partial u}$$
$$= xy\left(\frac{\partial^{2}z}{\partial x\partial y} - \frac{\partial^{2}z}{\partial y^{2}}\right) + \frac{1}{2}(x^{2} - y^{2})\frac{\partial^{2}z}{\partial x\partial y}$$

7. (a) Design a neat diagram of the region of integration and change the order of integration in the double integral

$$\int_0^1 dx \int_x^{1/x} \frac{y dy}{(1+xy)^2 (1+y^2)}$$

Or

Design a neat diagram of the region of integration and change the order of integration in the double integral

$$\int_{0}^{2a} \int_{x^{2}/4a}^{3a-x} f(x, y) \, dx \, dy$$

and verify the result when f(x, y) = 3.

(b) Use Gauss theorem to evaluate the integral

$$\iint\limits_{S} (y^2 z^2 dy dz + z^2 x^2 dz dx + x^2 y^2 dx dy)$$

where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$ above the xy-plane.

Or

6

6

б

Show that

$$\iiint_E (ax + by + cz)^2 dxdydz = \frac{4}{15}\pi (a^2 + b^2 + c^2)$$

where E is the sphere $x^2 + y^2 + z^2 \le 1$.

2017

(a) If S is a closed and bounded subset of R and F is an arbitrary open cover of S, then show that F has a finite subcover of S.

Or

State and prove nested interval theorem. 1+5=6

(b) Show that the function f defined on \mathbb{R} by

 $f(x) = \begin{cases} x, & \text{when } x \text{ is rational} \\ -x, & \text{when } x \text{ is irrational} \end{cases}$

is continuous at x = 0 only.

100

6

Or

Show that the function $f(x) = 3x^2$ is uniformly continuous on [-5, 4]. Also show that f is continuous on \mathbb{R} (the set of real numbers) but not uniformly continuous on \mathbb{R} . 2+2+2=6 5. (a) State and prove one of the Darboux's theorems. 1+5=6

Or

If f is non-negative continuous function on [a, b] and $\int_a^b f(x) dx = 0$, then prove that f(x) = 0 for all $x \in [a, b]$.

(b) If f and g are two functions of both bounded and integrable on [a, b], then prove that f + g is also bounded and integrable on [a, b] and

$$\int_{a}^{b} \{f(x) + g(x)\} dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx \qquad 6$$

6

6

Or

State and prove Bonnet's form of second mean-value theorem of integral calculus.

6. (a) Show that $\int_0^1 x^{m-1}(1-x)^{n-1} dx$ exists if and only if both m and n are positive.

Or State Dirichlet's test for improper integral. By using the same, show that the integral $\int_{3}^{\infty} \frac{4\sin x}{x^{p}} dx$ converges absolutely for p > 1 but only

absolutely for p > 1 but on conditionally for 0 .

 (b) State and prove Young's theorem for the equality of f_{xy}(a, b) and f_{yx}(a, b).
6 Or

If x = u + v, y = uv and z is a function of x and y, then prove that

$$\frac{\partial^2 z}{\partial u^2} - 2 \frac{\partial^2 z}{\partial u \partial v} + \frac{\partial^2 z}{\partial v^2} = (x^2 - 4y) \frac{\partial^2 z}{\partial u^2} - 2 \frac{\partial z}{\partial y}$$

 (a) State and prove Green's theorem in plane.

Or

6

Design a neat diagram of the region of integration and change the order of integration in the double integral

$$\int_0^{a\cos\alpha} \int_{x\tan\alpha}^{\sqrt{a^2 - x^2}} f(x, y) \, dx \, dy$$

Verify the result when f(x, y) = 1.

(b) Show that

 $\iint\limits_{S} (xy\,dx\,dy + yz\,dy\,dz + zx\,dz\,dx) = \frac{3}{8}$

1

6

6

6

5

where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant.

Or

Show that

$$\iiint (x+y+z) xyz \, dx \, dy \, dz = \frac{1}{840}$$

the integration being taken throughout the region bounded by the planes x = 0, y = 0, z = 0, x + y + z = 1.

2018

4. (a) State and prove Bolzano-Weierstrass theorem for set.

Or

Show that a necessary and sufficient condition for the sequence $\{u_n\}$ to be convergent is that to each $\varepsilon > 0$ there exists an integer *m* such that

 $|u_{n+p} - u_n| < \varepsilon \forall n \ge m, p \ge 0 (p \in \mathbb{Z})$

(b) If a function f is continuous on a closed interval [a, b], then prove that it attains its bounds at least once in [a, b].

Or

If f is a continuous function in [a, b] and f(a), f(b) are of opposite signs, then there exists a point $c \in]a, b[$ such that f(c) = 0. Prove this.

5. (a) Let $|f(x)| \le k$ for all x in [a, b] and P be a partition of [a, b] with norm $\le \delta$. If P^* is a refinement of P containing at most p more points than P, prove that

 $U(P^*, f) \subseteq U(P, f) \le U(P^*, f) + 2pk\delta$

Or

Prove that the oscillation of a bounded function f on an interval [a, b] is the supremum of the set

 $\{|f(x_2) - f(x_1)| : x_1, x_2 \in [a, b]\}$

(b) When is a bounded function f said to be integrable on [a, b]? State a necessary and sufficient condition for integrability of a bounded function f on an interval [a, b] and prove the same. 1+1+5=7

Or

If a function f is bounded in [a, b] and the set of points of discontinuity has a finite number of limit points, show that f is *R*-integrable on [a, b].

6. (a) Test the convergence of the improper integral

 $\int_0^\infty x^{n-1} e^{-x} dx$

Or

Show that the integral $\int_0^\infty \frac{\sin x}{x} dx$ converges but not absolutely.

6

4

6

 (b) State and prove Schwarz's theorem on the reversal of the order of partial derivation.

Or

Prove that by the transformation u = x - at, v = x + at the partial differential equation

$$\frac{\partial^2 z}{\partial t^2} = a^2 \frac{\partial^2 z}{\partial x^2}$$

reduces to
$$\frac{\partial^2 z}{\partial u \partial v} = 0.$$

7. (a) Design a neat diagram of the region of integration and change the order of integration in the double integral

$$\int_0^{2a} \int_{\sqrt{2ax-x^2}}^{\sqrt{2ax}} f(x, y) dx dy$$

Or

Compute the surface area of the sphere $x^2 + y^2 + z^2 = a^2$

 (b) State and prove Stokes' theorem or Gauss divergence theorem.
 8

2019

4. (a) State and prove nested interval theorem. 1+5=6

Or

State and prove Heine-Borel theorem. 1+5=6

(b) Show that the function f defined on R by $f(x) = \begin{cases} -x, & \text{when } x \text{ is rational} \\ x, & \text{when } x \text{ is irrational} \end{cases}$

is continuous only at x = 0.

If a function f is continuous in [a, b], then prove that it is uniformly continuous in [a, b]. If f is non-negative continuous function on [a, b] and $\int_a^b f(x) dx = 0$, then prove that f(x) = 0 for all $x \in [a, b]$. 6

(b) The set of points of discontinuity of a bounded function defined on [a, b] is finite. Then prove that f is R-integrable on [a, b].

Or

State and prove Bonnet's form of second mean-value theorem of integral calculus. 1+5=6

6. (a) Show that

$$\int_0^1 \frac{dx}{1+x^4 \sin x}$$

is convergent.

State and prove the Frullani's integral 1+5=6

6

(b) State and prove Young's theorem for the equality of $f_{xy}(a, b)$ and $f_{yx}(a, b)$. 1+5=6

Or

Given that z is a function of x and y and that $x = u^2 v$ and $y = uv^2$, then prove that

$$2x^{2}\frac{\partial^{2}z}{\partial x^{2}} + 5xy\frac{\partial^{2}z}{\partial x\partial y} + 2y^{2}\frac{\partial^{2}z}{\partial y^{2}}$$
$$= uv\frac{\partial^{2}z}{\partial u\partial y} - \frac{2}{3}\left(u\frac{\partial z}{\partial u} + v\frac{\partial z}{\partial v}\right)$$

7. (a) Design a neat diagram of the region of integration and change the order of integration in the double integral

$$\int_{0}^{2a} \int_{x^{2}/4a}^{3a-x} f(x, y) dx dy$$

and verify the result when f(x, y) = 4. 6 Or

Find the surface area of the portion of the sphere $x^2 + y^2 + z^2 = a^2$ inside the cylinder $x^2 + y^2 = ax$.

(b) Evaluate $\iint_{\infty} (yz \, dy \, dz + zx \, dz \, dx + xy \, dx \, dy)$,

where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant.

6

6

Or

Find the volume of the solid bounded by the surface $z=1-4x^2-y^2$ and the plane z=0.